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Abstract—Deep learning has demonstrated remarkable perfor-
mance across a wide range of tasks including natural language
generation, video understanding, and speech recognition. Behind
this trend of increasing performance, among innovations by
researchers in model architecture, training approaches, and data,
is scale. The number of floating-point operations (FLOPs) used
to train state-of-the-art models has increased more than 1000
fold within the last decade, resulting in an era where compu-
tation, particularly a lack of GPUs, are seen as a fundamental
limitation towards training better models. Despite this increase
in computation, however, modern Neural Networks (NNs) still
struggle with generalization and robustness.

Quantum computers as a computing paradigm offer solutions
to both further scaling as well as generalization. Particularly,
quantum computers have the ability to perform certain compu-
tations exponentially faster than classical computers, a capability
deemed quantum advantage. Simultaneously, due to the inherent
probabilistic nature of quantum computers, it is possible they
offer advantages over classical computers in training models that
generalize better and are more robust. Therefore, in this work we
investigate the robustness of Quantum Neural Networks (QNNs)
to noise.

Our results demonstrate that the performance of modern
QNNs trained on simulators cannot compare to the performance
of Classical NNs due to the inherent exponential cost per
qubit of quantum simulators on classical hardware. This led
us to pursue the training of Hybrid NNs, which involve both
classical and quantum layers. We find that the performance
of QNNs is more invariant to noise than Classical NNs, but
that this trend does not hold for Hybrid NNs. We release
our code publicly at https://github.com/gnanduru1/qmnist and
https://github.com/gnanduru1/torchquantum.

Index Terms—Quantum Machine Learning, Noise Robustness,
Deep Neural Networks

I. INTRODUCTION

In 2012 the deep learning revolution began, where the
field of Machine Learning (ML) became dominated by Neural
Networks (NNs) due to their increasing performance [1].
Since then, the scaling of NNs has been responsible for a
significant portion of increasing performance on benchmarks
[2] [3] [4] [5]. This has been characterized by an exponential
increase in the demand for GPUs, as well as a large focus in
increasing GPU throughput, which under optimal conditions
has increased up to 1000 fold in the last 8 years [6].

One common hypothesis for the future of AI is that contin-
ued scaling will bring modern algorithms to achieve broad

human-level intelligence, also known as Artificial General
Intelligence (AGI) [7]). One such minimum estimate of the
amount of compute needed to achieve such a performance
is 1e35 FLOPs [8]. However, as estimates of the amount of
compute used for state-of-the-art large models are currently
around 1e25 FLOPs [9], this is a 10-order magnitude increase
in the number of FLOPs necessary. As Moore’s law slows
and is predicted to halt [10], this technical challenge of a
further 10 order of magnitude increase in computation poses
an opportunity for new computing paradigms other than GPUs
to achieve or reduce this FLOP count. One such computing
paradigm is Quantum computers.

A. Quantum Neural Networks (QNNs)

Modern NNs rely on the gradient descent and backprop-
agation algorithm to perform optimization with respect to a
loss function. Gradient tracking as well as backpropagation
compose a significant portion of the amount of FLOPs used
to train NNs, while also slowing training due to increasing the
amount of memory needed. Researchers have demonstrated
that Quantum Neural Networks (QNNs) can achieve a near
quadratic or even polynomial speedup for specific portions
of optimization problems under specific assumptions [11]
[12] [13] [14]. In the context of training and scaling large
NNs trained on huge datasets, this offers high promise. For
example, given the 1e35 FLOPs estimate for matching the
distribution of human text corpora with a language model, a
quadratic reduction would bring the number of FLOPs on a
quantum computer down to less than 1e18.

Additionally, the inherent probabilistic nature of QNNs can
offer benefits in specific use-cases. One troubling property of
NNs has long been that they are highly nonlinear functions,
resulting in several local minima in the loss landscape. In the
context of optimization, this poses a challenge as it is possible
for NNs to get stuck in local minima, resulting in a non-
optimal solution. However, it has been shown that intentional
randomization and noise can be helpful in escaping saddle
points [15] [16]. Thus, it is possible the inherent probabilistic
nature of QNNs could benefit in resolving this issue, as the
noise from qubits being probabilistic could add randomization
to observed losses.

https://github.com/gnanduru1/qmnist
https://github.com/gnanduru1/torchquantum


Similarly, researchers in ML have long focused on making
models more robust such as through training invariance to
specific data augmentations [17] [18] [19]. One such data
augmentation or invariance focus is on noise, as becoming
invariant to noise is an inductive bias that often increases
the generalization of models without other drawbacks [20].
Intuitively, this makes sense as an image with a limited amount
of random noise generally maintains its semantic features (see
Fig.4 for lower standard deviations).

II. RELATED WORK

Modern quantum computers during the Noisy Intermediate
Scale Quantum (NISQ) era of computing are limited to few
tens/hundreds of qubits and suffer from high error rates [21].
Consequently, a common approach towards studying machine
learning on quantum computers has been through classical
simulators [22]. However, simulating quantum phenomena on
classical computers requires memory that scales exponentially
with the number of qubits [23]. Additionally, modern NNs rely
on huge amounts of neurons to achieve high performance.
Thus, the performance of pure QNNs is often low when
compared to pure classical NNs.

A. Hybrid Classical-Quantum Neural Networks

One approach towards increasing the performance of Quan-
tum Neural Networks (QNNs) trained on classical simulators
has been to introduce both classical and quantum phenomena
into the NN. These networks are known as Hybrid Neural
Networks (HNNs). Building and training NNs in this manner
allows for maintaining the scaling of classical NNs, while
studying and reaping the potential benefits of QNNs. In this
work, we experiment with pure QNNs, HNNs, and classical
NNs.

Several existing works have explored the use of HNNs
[24] [25] [26]. [24] focus on a biologically inspired imple-
mentation, using spiking neural networks [27]. Alternatively
motivated by the parameter efficiency of Convolutional Neural
Networks (CNNs), [26] and [25] focus on a Hybrid CNN. This
involves learning weights for convolutional filters–an inductive
bias we avoid due to becoming less common within recent
years.

B. Noise-Robustness for Classification

Many works have focused on the affect of quantum neural
networks on noise robustness. Similar to the focus of our work,
[24] focus on noise-robust image classification. However, the
architecture used is Spiking Neural Networks (SNNs), which
differ from our usage of Articial Neural Networks (ANNs).
Despite mimicking biological neurons in the brain, however,
SNNs have failed to achieve the performance of ANNs on
standard benchmarks. [28] proposes an entirely new approach
towards increasing adversarial robustness through the inclusion
of noise layers. These serve the purpose of making QNNs more
invariant to noise–thus leading to more robustness to adver-
sarial noise. Similarly, [29] focus on the affects of quantum
noise on robustness in classification tasks. This work primarily

focuses on the theoretical perspective, deriving bounds for
adversarial attacks based off of depolarization noise in pure
quantum networks.

Perhaps the most similar work to ours is in [26], where the
authors explore image classification performance and adver-
sarial robustness with hybrid convolutional architectures. Our
work differs from this work in our focus on non-convolutional
architectures–as convolutional architectures have become less
common within the last couple of years [30]. Additionally,
our work primarily focuses on invariance and generalization
as a measurement for robustness, rather than robustness to
adversarial attacks.

III. MOTIVATION

Noise during the NISQ era of quantum computing is often
viewed as detrimental. Additionally, qubits are inherently
probabilistic, leading to challenges in creating complex deter-
ministic quantum systems. In this work, inspired by both of
these apparent “flaws,” we question whether these characteris-
tics can be used as an advantage under specific circumstances.

One of the major goals of the field of ML is generalization,
aiming to ensure that models perform well on new, unseen
data, a cornerstone for deploying reliable and effective sys-
tems. Specifically within the subfield of generalization is ad-
versarial robustness. In the context of QNNs, this form of gen-
eralization has been studied extensively [24] [28] [26]. These
works have demonstrated the effectiveness of QNNs/HNNs
in robustness to adversarial noise when compared to classical
NNs.

Tangential to the theme of robustness, it has been widely
practiced within the Computer Vision (CV) community to
intentionally train noise invariance into image recognition
models [17] [18] [19]. Invariance can be defined as the
ability of a model to maintain consistent output for input data
that varies in ways irrelevant to the task, despite potential
disturbances or transformation.. Therefore, training invariance
into neural networks increases the probability that images
captured in the wild with noise are represented in ways that
match representations of images from the training distribution.
Consequently, invariance often leads to better generalization
capabilities [31] [32].

Seeking to investigate a form of robustness other works have
not researched, and motivated by the useful characteristics of
noise invariance, in this work we focus on exploring robustness
through means of invariance. This involves training models to
classify properly regardless of the different levels of noise. An
example of this is shown in Fig. 4, where models would be
trained to classify all elements within each row as the same
digit.

One reason for the probabilistic nature of qubits improving
performance can be understood intuitively when comparing
the measurement of the states of qubits to dropout. Dropout
in neural networks is an approach that randomly drops the
usage of different neurons during training [33]. Despite the fact
that dropout introduces stochasticity into neural networks, it
has been successful in improving performance across a broad



range of tasks and is widely used [34]. The nature of qubits
being probabilistic, and the fact that quantum measurement
is a process that samples from a distribution, emulates certain
characteristics of dropout. This intuition informed our decision
to investigate QNN and HNN noist robustness.

IV. IMPLEMENTATION

We implement our Quantum models and custom dataset
in Python using the TorchQuantum [35] library. We fork a
version of TorchQuantum with some additional functionality
at https://github.com/gnanduru1/torchquantum.

A. Image Preprocessing

To process the image into a 1D input vector, we start by
performing 2D average pooling on the image with a kernel
size of 6 and a stride of 6, reducing it from a 28× 28 matrix
to a 4 × 4 matrix. Pooling is typically used to downsample
images for convolutional neural networks. Despite the fact
that pooling reduces the image input size, it has been found
to preserve the image features while decreasing the memory
required to process the image [36]. This is especially help-
ful towards developing quantum neural networks due to the
stricter memory constraints imposed by working with limited
qubits. After pooling, we flatten the 4 × 4 matrix into a 1D
input vector of length 16.

B. Models

We implement LayeredQNN and HybridQNN as
TorchQuantum modules. To provide a baseline for evaluating
quantum neural networks, we implement a classical neural
network (ClassicalNN) as a PyTorch module.

Architecture of ClassicalNN

Fig. 1. ClassicalNN reflects a common implementation of a multi-layer
perceptron, with a one-dimensional input vector, fully connected hidden
layers, and activation functions between each layer [37]. In the diagram, B
is batch size, D is the input vector size, W is the width of each intermediate
hidden layer, F is the activation function applied to qubits, and C is the number
of target classes.

1) Classical Model: The ClassicalNN contains exclusively
linear layers with one input layer, one output layer, and a
user-specified number of hidden layers. A ReLU activation
function is applied after the input layer and each hidden
layer. After data is passed through the output layer, output
logits are passed through a softmax activation function to

generate the probabilities of each target class. An example of
the ClassicalNN is shown in Fig. 1.

Architecture of LayeredQNN

Fig. 2. We present LayeredQNN, a Quantum Neural Network implemented
as a TorchQuantum module that accepts batches of 1D input vectors, encodes
inputs into qubits, executes trainable gates on the qubits, and measures them
into outputs, to which we apply a softmax activation function to normalize
into target class probabilities. In the diagram, W is the number of wires abd G
is the gate applied to qubits. The rest of the symbols have the same meaning
as in Fig. 1.

2) Quantum Model: Fig. 2 displays LayeredQNN, a model
with its depth and width specified by input parameters, where
depth is the number of quantum layers, width is the number
of wires, and each wire represents one qubit. After receiving
an input vector, We use TorchQuantum’s general encoder to
initialize the wires. We pass the numbers from the input vector
into the encoder, which applies user-specified gates to each
wire with the input vector data as parameters to the gates. We
use the single-qubit, single-parameter RX rotation gate as the
default operation, but we include results for the RY gate in
our ablation testing. Therefore, in our experiments, the input
vector initializes the model’s qubits by determining their phase
angles on the X or Y axis.

Architecture of HybridNN

Fig. 3. The HybridNN combines classical and quantum neural networks by
placing classical layers before and after a series of quantum layers. The input
is processed into a classical layer, and qubit measurement values are passed
through a classical layer before a softmax is applied to the output.

https://github.com/gnanduru1/torchquantum


3) Hybrid Model: HybridQNN has three classical linear
layers in total: two before the quantum layers, and one
between the quantum layers and softmax activation function.
HybridQNNs initializes its wires with TorchQuantum’s general
encoder receiving the output of the 2nd classical layer as
parameters for its gates. After the wires pass through the final
quantum layer, they are measured and passed as inputs into
the final classical layer. An example hybrid model is shown
in Fig. 3.

V. EXPERIMENTAL SETUP

We added Gaussian noise with standard deviations spanning
linearly from 0.0 to 4.5, as shown in Fig. 4. Additionally, we
include visualizations of Poisson, speckle, and salt-and-pepper
noise distributions in Figs. 5, 6, 7. We seed all libraries with
randomness to ensure reproducibility of our results.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

MNIST Digits with Increasing Degrees of Noise Added

Standard Deviation of Gaussian Noise

Fig. 4. We apply different degrees of Gaussian noise to each image
categorized by the standard deviation of the Gaussian distribution sampled
from. This is done in increments of 0.5, spanning from 0 to 4.5. Samples of
the digits 1, 5, and 9 are shown.

We run a preliminary experiment to determine an optimal
number of quantum layers and wires for the HybridNN. We
set up a grid search with quantum layer counts of 1,2,4, and
8, and wire counts of 2, 6, 10, and assess each model on its
final test accuracy. We also tried using a wire count of 14
and found this resulted in an out-of-memory error. We use the
trainable RX gate in our encoder and quantum layers.

After determining which of the 16 models results in the
highest test accuracy, we further verify our result by running
two more dense 1-D searches ablating the number of wires
and the number of quantum layers, respectively.

A. Hyperparameters

Each run is trained and evaluated on MNIST with no
additional noise added. We train each model up to 50 epochs1

with a batch size of 256 and a training/validation split ratio of
0.9 : 0.1. We use PyTorch’s Adam optimizer with a constant
learning rate of 0.005 and a weight decay of 0.0001.

Our main experiment was to assess the test accuracy per-
formance of each of our three proposed models on increasing
levels of Gaussian noise added to each image. We also run ex-
periments investigating the models’ classification performance

1We implement early stopping upon the model experiencing two decreases
in validation accuracy in a row. We observe early stopping activates almost
every run before 20 epochs.

on noisy images after being trained on a dataset with no added
noise. To test different quantum gates, we run an ablation test
on the RX and RY gates for our quantum layers and encoder.

B. Noise Distributions

To evaluate how different distributions of noise added to
MNIST images affect the performance of our models, we per-
form ablation tests determining the effect ofGaussian Poisson,
speckle, and salt-and-pepper noise on model performance.

1) Gaussian noise: To apply Gaussian noise to images, we
use PyTorch to generate a tensor with the same shape as the
image containing random values sampled from a Gaussian
distribution. We scale this tensor by the desired standard
deviation and add it to the image.

2) Speckle noise: To apply speckle noise to images, we
similarly generate a tensor in the shape of the image containing
Gaussian noise, but we multiply this tensor by the original
image and then multiply the resulting image by the desired
deviation. We finally add the generated speckle noise matrix
to the original image. We show examples of speckle noise in
Fig. 7.

3) Poisson noise: To apply Poisson noise to images, we
use PyTorch’s Poisson method, which samples a Poisson
distribution using each input as the rate parameter. We scale
Poisson noise by multiplying the image pixel values by a
factor, adding the Poisson noise to the image, and dividing
the pixel values by the same factor. We show examples of
Poisson noise in Fig. 5.

4) Salt and pepper noise: To apply salt and pepper noise
to images, we first choose a percentage of pixels to apply salt
and pepper noise to, p. We then set p/2 pixels to black and
p/2 pixels to white. We show examples of salt and pepper
noise in Fig. 6.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MNIST Digits with Increasing Degrees of Noise Added

Strength of Poisson Noise

Fig. 5. We apply different degrees of Poisson noise to each image categorized
by the rate of the Poisson distribution sampled from. This is done in
increments of 0.1, spanning from 0 to 0.9 Samples of the digits 1, 5, and 9
are shown.

VI. RESULTS

We observe in our grid search in Table I that the HybridNN
run with 6 wires and 2 quantum layers performs with the
highest test accuracy of 97.33. We observe performance is
less predictable for HybridNNs with 2 wires, but results are
more consistent for HybridNNs with 6 and 10 wires. Although
the performance of the 6 wire and 2 layer HybridNN reached



0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MNIST Digits with Increasing Degrees of Noise Added

Percentage of Pixels of Salt and Pepper Noise

Fig. 6. We apply different degrees of salt and pepper noise to each image
categorized by the percentage of pixels with the salt and pepper noise. This
is done in increments of 10%, spanning from 0 to 0.9. Samples of the digits
1, 5, and 9 are shown.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

MNIST Digits with Increasing Degrees of Noise Added

Standard Deviation of Speckle Noise

Fig. 7. We apply different degrees of Speckle noise to each image categorized
by the standard deviation of the Gaussian distribution sampled from. This is
done in increments of 0.5, spanning from 0 to 4.5. Samples of the digits 1,
5, and 9 are shown.

Quantum
Layers

Number of Wires

2 6 10

1 52.0 92.0 94.7
2 85.3 97.3 90.7
4 57.3 93.3 96.0
8 85.3 85.3 96.0

TABLE I
GRID SEARCH OF QUANTUM LAYERS AND NUMBER OF WIRES ON

HYBRIDNN TEST ACCURACY

the highest accuracy, we observe that HybridNNs with 10
wires generally perform better on the test set, with an average
accuracy of 94.3 compared to the 6-wire average accuracy of
92.0.

To confirm our results from the preliminary grid search, we
run two additional 1-D grid searches, shown in Tables IIIII.
Despite being at a higher granularity, these results corroborate
with Table I to demonstrate that HybridNN is best imple-
mented with 6 wires and 2 quantum layers. We observe in
Table II that implementing HybridNN with 5 quantum layers
and 6 wires replicates the peak accuracy of 97.3 found using
2 quantum layers and 6 wires. However, using more layers
requires more memory and time resources, so we proceeded
with the more efficient 2-layer, 6-wire model for the rest of
our experimentation with HybridNNs.

Table IV shows that the HybridNN reaches the highest test
accuracy on experiments with Gaussian noise distributions

Layers Accuracy

1 92.0
2 97.3
3 94.7
4 93.3
5 97.3
6 94.7
7 92.0
8 94.7
9 93.3

TABLE II
TEST ACCURACY OF HYBRIDNN

WITH 6 WIRES

Wires Accuracy

2 85.3
3 88.0
4 86.7
5 93.3
6 97.3
7 93.3
8 90.7
9 89.3

10 90.7

TABLE III
TEST ACCURACY OF HYBRIDNN

WITH 2 LAYERS

Noise ClassicalNN QuantumNN HybridNN
Acc. Drop Acc. Drop Acc. Drop

0 92.0 - 20.0 - 97.3 -
0.5 88.0 4.35 22.7 -13.4 92.0 5.48

1 81.3 11.6 22.7 -13.4 85.3 12.3
1.5 74.7 18.8 20.0 0.0 80.0 17.8

2 68.0 26.1 21.3 -6.6 77.3 20.5
2.5 62.7† 31.9 16.0 20.0 54.7 43.8

3 61.3 33.3 16.0 20.0 50.7 47.9
3.5 57.3 37.7 18.7 6.7 46.7 52.0

4 50.7 44.9 13.3 33.4 42.7 56.2
4.5 46.7 49.3 12.0 40.0 42.7 56.2

TABLE IV
TEST ACCURACY AND RELATIVE DROP IN PERFORMANCE OF MODELS
TRAINED ON MNIST WITH INCREASING STANDARD DEVIATIONS OF

GAUSSIAN NOISE. THE RELATIVE DROP IS THE MODEL’S PERFORMANCE
DROP USING THE NOISE LEVEL SPECIFIED WHEN COMPARED TO THE

MODEL TRAINED ON MNIST WITH NO NOISE. A NEGATIVE DROP MEANS
THE MODEL PERFORMANCE INCREASED WITH THAT NOISE LEVEL. ALL

RESULTS ARE SHOWN AS PERCENTAGES. † THIS POINT MARKS THE NOISE
LEVEL WHERE CLASSICALNN STARTS TO PERFORM AT HIGHER

ACCURACY THAN HYBRIDNN.

of lower than 2.5 standard deviation applied to the dataset.
However, once the standard deviation reaches 2.5, ClassicalNN
performs with higher test accuracy. We find the performance
drop, shown in the column beside accuracy for each model,
is steeper for HybridNN and ClassicalNN. Aligned with our
expectations of QNNs having improved performance due to
being probabilistic, we find QNNs to experience the lowest
drop in performance after heavier amounts of Gaussian noise
is added to the dataset. These results are also visualized in
Fig. 8.

When evaluating the models on noisy test sets after re-
moving the noise during training in Table V and Fig. 9, we
find the trends observed in Table IV and Fig. 8 are amplified.
HybridNN drops 84.9% in relative accuracy compared to the
initial test accuracy on the noiseless test set. ClassicalNN,
however, drops 63.2% in relative accuracy compared to its
initial result. While both of these drops are more extreme than
in Table IV, the final test accuracy of HybridNN on the noisiest
test set is 14.7%, much lower than the final test accuracy of
ClassicalNN, which is 33.3%.

We display a head-to-head comparison of HybridNN with
and without noise applied to the training set in Fig. 10.
HybridNN consistently performs with higher test accuracy



Accuracies of Models Over Increasing Degrees of Noise

Fig. 8. Visualization of results from Table IV. The x-axis represents standard
deviation of Gaussian noise and the y-axis represents final test accuracy score.

Accuracies of Models Over Increasing Degrees of Noise
Only In Test Set

Fig. 9. We provide a visualization of the results from Table V. The x-axis
represents the standard deviation of Gaussian noise added only to the test set
images, and the y-axis represents test set classification accuracy.

Comparison of Accuracies of HybridNN With and Without
Noise During Training.

Fig. 10. The blue line represents HybridNN trained with noise applied to
both the training and testing set. The red line represents HybridNN trained
with noise only applied to the testing set.

Noise ClassicalNN QuantumNN HybridNN
Acc. Drop Acc. Drop Acc. Drop

0 90.7 - 24.0 - 97.3 -
0.5 85.3 5.9 24.0 0.0 88.0 9.6

1 70.7 22.1 20.0 16.7 70.7 27.4
1.5 61.3 32.4 17.3 27.8 58.7 39.7

2 54.7 39.7 18.7 22.2 48.0 50.7
2.5 49.3 45.6 17.3 27.8 41.3 57.5

3 46.7 48.5 16.0 33.3 34.7 64.4
3.5 40.0 55.9 14.7 38.9 26.7 72.6

4 37.3 58.8 12.0 50.0 22.7 76.7
4.5 33.3 63.2 12.0 50.0 14.7 84.9

TABLE V
IN THIS EVALUATION, WE TRAIN WITHOUT NOISE AND IMPLEMENT NOISE

ONLY DURING TESTING.

when it is trained on noisy data.

Noise RX RY

0 97.3 93.3
0.5 92.0 92.0

1 85.3 82.7
1.5 80.0 76.0

2 77.3 42.7
2.5 54.7 60.0

3 50.7 48.0
3.5 46.7 46.7

4 42.7 42.7
4.5 42.7 44.0

TABLE VI
TEST ACCURACY OF HYBRIDNN WITH DIFFERENT ENCODER GATES

In Table VI, we perform an ablation test assessing the
effectiveness of the RX, and RY gates in the encoder and
quantum layers of HybridNN. We find using the RX gate
generally yields higher test accuracy than using the RY gate.

Accuracies of HybridNN With Different Encoder Gates

Fig. 11. Visualization of the results of HybridNN using different quantum
gates from Table VI. The x-axis represents the standard deviation of Gaussian
noise and the y-axis represents test set classification accuracy. As shown in
the legend, the curve for RX is in blue and the curve for RY is in red.

In Fig. 11, we visualize the gate ablations from Table VI.
We display the comparable test accuracy of HybridNN using
the RX and RY gates, aside from a drop in the RY-gate model
when the standard deviation of Gaussian noise equals 2.0.



Accuracies of HybridNN With Different Types of Noise
Applied During Training

Fig. 12. We report the test accuracies of HybridNN on different types and
degrees of noise added. For Gaussian and speckle noise, the degree of noise
corresponds to the standard deviation of Gaussian noise used to perturb the
image. For salt and pepper and Poisson noise, the degree of noise corresponds
to 5x the proportion of image pixels affected. For Poisson noise, the degree of
noise corresponds to the 5x the strength of Poisson noise. We present samples
for all types of noise and all degrees of noises in Figs. 4 5, 6, 7

In Fig. 12, we present four experiments corresponding to
each noise variation we identified in Section V-B. We observe
Gaussian and speckle noise cause the biggest drops in test
accuracy as the degree of noise increases, and salt and pepper
and Poisson noise cause smaller, but comparable drops in test
accuracy as the degree of noise increases.

VII. DISCUSSION AND LIMITATIONS

A. Discussion

Consistent with previous works, the results in Fig. 8 and
Fig. 9 demonstrate that QNNs have an advantage in robustness
to noise when compared to Classical NNs. This is apparent
through a lower degradation across noise levels–demonstrating
better scalability. Remarkably, the performance of QNNs in
Fig. 8 and Fig. 9 is starkly similar, despite one set of results
being trained on noisy samples while the other was not. This
suggests that the properties of QNNs may favor an inherent
invariance towards noise during training–as a lack of training
on noisy examples did not worsen the scaling of QNNs across
noise levels significantly.

Although existing works have found that HNNs can increase
robustness to adversarial noise, we found this trend does not
occur with invariance to noise, as demonstrated in Figs. 89.
One hypothesis for why this may be the case is that invariance
to noise can be seen as a stronger requirement than adversarial
noise–meaning that the reliance on quantum phenomena to
increase performance must be higher when studying invari-
ance than in HNNs for existing works studying adversarial
robustness. This could explain why pure QNNs scale well to
different levels of noise but HNNs do not in our results.

In Fig. 12, we display the performance dropoff of the
HybridNN as the degree of noise increases for four different
types of noise. We find that Gaussian noise leads to the steepest

decrease in accuracy, closely followed by speckle noise. Salt
and pepper noise decreases the accuracy less, and the Poisson
distribution decreases the test accuracy the least when added
to the image dataset. We find these results consistent with
the visual examples of noise perturbations in Fig. 4, Fig. 5,
Fig. 6, and Fig. 7. While we may scale Poisson noise to
a high degree, it mainly acts to obscure the existing white
pixels of the image, and does not transform the surrounding
black pixels. This visual difference may enable the model to
be more invariant to Poisson noise, as it will not be affected by
perturbations to the black pixels surrounding the digits that the
other three forms of noise make. While salt and pepper noise
significantly obscures most of the images, it doesn’t affect
every pixel. Gaussian and speckle noise distributions, on the
other hand, are added to every single image pixel. We believe
HybridNN’s test accuracy experiences the steepest drops on
these two types of noise because Gaussian and speckle noise
affect the most pixels and visibly obscure the digits more than
Poisson and salt and pepper noise.

B. Limitations

During the NISQ era, quantum computers are limited in the
number of qubits and have high error rates. Consequentially,
one of the primary techniques used to study the behavior
of quantum phenomena on different algorithms are quantum
simulators running on classical computers. This approach was
leveraged in this paper, and as such one limitation of our
work is the caveats brought about by a simulator. One of
the major limitations of classical simulators for simulating
quantum phenomena is that the memory usage is exponential
with respect to the number of qubits. This limited the model
size at which we could conduct experiments.

Additionally, our experiments use an architecture that is not
the current state-of-the-art transformer model [38]. We instead
focus on Multilayer Perceptron (MLP) variants as MLPs form
the basis of almost all widely used modern architectures in
deep learning and are more versatile. A possible future work
could investigate if our findings extend to the transformer
architecture.

VIII. CONCLUSION

In this work, we investigate the effect of quantum phenom-
ena on the noise invariance of NNs as a form of robustness.
To achieve this, we train Quantum Neural Networks (QNNs),
Hybrid Neural Networks (HNNs) involving both classical and
quantum layers, and Classical Neural Networks to recognize
hand-written digits from the MNIST dataset. Naturally, the
performance of Classical NNs monotonically decreases for
increasing levels of noise. However, the performance of QNNs
decreases slower than the ClassicalNN for higher levels of
noise. This offers insight into the benefits of QNNs being
more invariant to noise due to the probabilistic nature of
qubits. However, due to the non-scalability of modern quantum
simulators and the limited amount of qubits in modern NISQ
computers, the performance of Classical NNs is much higher
than QNNs. To achieve a more fair comparison, we also



compare the performance of HNNs to Classical NNs in noise
invariance, but find that HNNs are not more robust to noise
compared to Classical NNs or QNNs.
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