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Abstract—Recent developments in wireless sensing have
demonstrated the potential to bridge communication between
the deaf and hearing communities through automated American
Sign Language (ASL) recognition. We analyze current distinct
wireless sensing systems using Wi-Fi, RFID, acoustic waves,
and millimeter-wave technologies, evaluating their recognition
capabilities, technical limitations, and ease of implementation. We
draw unique insights by comparing results across the different
wireless sensing systems to identify the strengths and drawbacks
of each general system. This survey also emphasizes the practical-
ity of each design by reporting each study’s cost and complexity.
Our main discoveries are there is no single ASL recognition
system that is significantly better in all criteria than the rest, and
each system can benefit in accuracy and reliability greatly from
incorporating state-of-the-art Al to interpret received signals.

I. MOTIVATION

ASL (or American sign language) is a key piece in bringing
inclusivity to the deaf community. By extending this to the
use of different wireless sensing techniques, we can improve
communication between those who do and don’t know ASL.
Analyzing this concept from a wireless sensing approach
offers a contactless, non-invasive method that can detect subtle
gestures, imperative for ASL.

This problem is important because as we advance in real
time translation from spoken language to spoken language, it
is important we keep up with ASL as well as spoken language
to further protect the inclusion of the deaf community. This is
not only useful for those who use ASL, but also for those who
want to communicate with the hearing impaired. This can also
have an extension across different types of sign language and
thus different spoken languages as well.

II. INTRODUCTION

ASL is not just a mode of communication for the hard of
hearing community but also a bridge for fostering inclusivity in
society. Recent advancements in real-time language translation
have predominantly focused on spoken languages, leaving a
gap in similar technologies for sign language. Addressing this
gap is crucial to ensuring equitable communication tools that
serve both ASL users and those wishing to engage with them.
Wireless sensing technologies offer a unique solution, provid-
ing contactless, non-invasive methods capable of detecting the
subtle gestures essential for ASL. Utilizing wireless sensing
technologies, a person’s privacy is retained as the user does
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not need to be continuously recorded as only reflections back
to the sensor are measured[11]. Unlike camera based methods,
wireless sensing is also less affected by environmental factors
such as low lighting, ensuring consistent performance in
diverse settings [11][14]. Furthermore, wireless systems can
operate in real-time and at greater distances, offering enhanced
flexibility for practical applications in everyday environments.

This paper examines six wireless sensing systems spanning
technologies like Wi-Fi, RFID, acoustic waves, and mmWave
comparing their capabilities, limitations, and potential for ad-
vancing ASL recognition. By offering a detailed comparative
analysis, this review aims to identify the strengths and trade-
offs of each approach, guiding future innovations in inclusive
communication tools.

A. Metrics

ASL is a specific type of human detection. It does not
focus on human vitals or the movements of an entire body,
it specifically focuses on a small portion of the human body,
the hands. In order to translate from ASL, minute gestures and
subtle differences in those gestures are imperative to proper
detection. When considering different sensing techniques, we
look at three metrics in order to classify its effectiveness as
an ASL detection system.

1) Classification Accuracy: This is a percentage on how
well a system is able to detect and therefore classify
hand gestures or positions to the correct letter, word,
or phrase it is trying to achieve. As we are looking for
a system that interprets ASL as correctly as possible.
We will have to come up with a method to compare
accuracies between different experimental setups, as
some papers achieve higher accuracies by including
less classes in their trials, which demonstrates accurate
classification within the context of the experiment but
lacks generalizability.

2) Cost: Another key factor in evaluation is cost. A
good ASL detection system should be made accessible
through cheap implementation. Our estimation of cost
depends largely on the thoroughness of documentation
done by each researcher, as without exact prices we are
left to guess which devices were bought to perform the
experiments and at which price.



3) Reliability: Finally, we are looking for systems with
proven robustness in diverse environments, with varia-
tions in weather conditions, hand/arm size and shape,
and cultural backgrounds of the ASL communicators.

III. WIFI SENSING

Wi-Fi Sensing works by detecting and classifying disrup-
tions in the Wi-Fi spectrum caused by movement over time.
The Wi-Fi clients emit electromagnetic waves in the form
of standard communication data frames, which are used for
sensing. These signals are transmitted back to the AP at a
configurable sounding rate, which can be adjusted for faster
or slower measurements.

A. WiFinger

WiFinger leverages WiFi signals to recognize fine-grained
finger gestures, providing a contactless and non-invasive ap-
proach to human-computer interaction. By analyzing Channel
State Information (CSI) signal changes caused by 9 different
finger movements, WiFinger identifies unique gesture patterns.
The system uses a wireless access point and a laptop to
capture these variations. Through noise removal, filtering, and
advanced algorithms like dynamic time warping (DTW) and
k-Nearest Neighbors (kNN), WiFinger processes and classifies
these patterns into gestures. Although WiFinger cannot detect
the full scope of ASL, as it only classifies hand symbols
representing numbers, it is a step in the right direction.

The system’s cost-effectiveness is a standout feature, as
it relies on commercially available WiFi devices rather than
requiring specialized hardware like software-defined radios or
wearable sensors. By simply modifying existing WiFi drivers,
WiFinger offers a scalable and affordable solution for gesture
recognition, which can be widely adopted without significant
financial barriers.

In terms of reliability, WiFinger demonstrates resilience in
controlled environments, effectively filtering out noise and
adapting to minor disturbances. However, its performance can
be impacted by dynamic changes, such as moving objects or
additional people near the user, which can interfere with the
CSI signal patterns. While these limitations highlight areas
for improvement, WiFinger’s robust preprocessing and feature
extraction techniques allow it to maintain reliable operation
under moderately stable conditions.

WiFinger achieves an average recognition rate of 90.4%
for the nine individual hand gestures. To test its accuracy
in sequences of gestures, 20 sequences were created, each
containing 18 gestures. The test subjects then performed 5
of the 20 sequences at random. This resulted in a 82.67%
classification accuracy. [5]

B. Sign Language Gesture Recognition using Doppler Radar
and Deep learning

In this system, a microwave X-band Doppler radar is used
to capture ten emergency specific hand gestures by detect-
ing micro-Doppler signatures or unique frequency variations
caused by hand movements. The radar transceiver transmits

a signal that reflects off the user’s hands, capturing motion
variations as raw data. This data is processed using joint
time-frequency analysis to generate spectrograms that visually
represent the gesture patterns. These spectrograms are then
classified using deep learning algorithms.

Initially, a Deep Convolutional Neural Network (DCNN)
is employed to analyze the spectrograms, achieving high
classification accuracy. To further enhance performance, a pre-
trained VGG-16 transfer learning model is applied, improving
accuracy by leveraging its ability to identify subtle patterns
in images. This system effectively combines hardware-based
radar sensing with advanced machine learning techniques to
provide a non-invasive and accurate method for recognizing
ASL gestures. This is more closely a representation of ASL
as this system is detecting more than just hand positions, but
rather entire movements.

This study employs accessible and relatively affordable
microwave X-band Doppler radar hardware paired with Matlab
and LabVIEW software. By using commercially available
equipment, the approach avoids the need for specialized or
costly alternatives, making it a practical choice for widespread
adoption.

The performance can vary depending on factors such as
user proximity to the radar and environmental noise. The
preprocessing steps and use of advanced algorithms, like
the Deep Convolutional Neural Network (DCNN), enhance
robustness but leave room for optimization in more dynamic
environments or with more diverse user profiles.

In terms of accuracy, the results are impressive. The DCNN
algorithm achieves an 87.5% validation accuracy for classi-
fying 10 distinct ASL gestures, while applying the VGG-16
transfer learning model improves this to 95%. This high accu-
racy level highlights the potential of Doppler radar combined
with deep learning for real-world applications. [2]

C. Other WiFi Sensing Methods

To supplement our research in WiFi sensing methods, we
analyze the findings of another literature review([7]. We found
overviews of two additional methods to be prominent:

1. WiCatch uses channel state information (CSI) to construct
a virtual antenna array to track hand movements, achieving
95% recognition accuracy on 9 two-hand gestures. WiCatch
does not require any wearable sensors or additional equipment
beyond a wireless link card, which can be purchased for under
$50 (e.g. Intel 5300 NIC) [12].

2. WiSee introduces an alternative gesture recognition sys-
tem using Doppler-based detection. By constructing a pro-
file out of Doppler shifts extracted from wireless signals,
researchers were able to match Doppler shift patterns to hand
gestures. Using this technique, WiSee achieved 94% accuracy
on 9 gestures. However, WiSee researchers relied on USRP-
N210 radios to achieve these results, and these radios can cost
upwards of $3,500.00 each [10].

IV. RFID

Radio frequency identification (RFID) is a wireless de-
tection scheme that uses tags and readers to monitor an



environment. RFID tags are microchips that can be active
(battery powered) or passive. These tags are light, small,
and can be worn or placed on objects meant to be tracked.
RFID readers will read passive tags by transmitting energy
to them and decoding the response given by the chip. This
is generally close-range, with typical passive RFID systems
working between 10 cm - 1 m of range. Active RFID systems
use powered tags that transmit a signal at a much further range,
however passive tags are significantly cheaper to purchase [4].
A. RF-Sign

RF-sign is an RFID-based gesture recognition system that
aims to improve detection accuracy by capturing granular
finger movements as opposed to coarser hand movements.
Researchers designed a glove with passive RFID tags on
each finger and attempted to track the phase of each tag to
reconstruct the user’s finger movements. However, researchers
encountered two major roadblocks in implementing this de-
sign:

1. Continuous gestures cannot be segmented easily using
empirical thresholds. As the ASL user’s wrist orientation
changes during signing, the spatial readings of the RFID tags
change in an uneven manner, making it difficult to interpret the
tracked movements of the fingers. To address this, researchers
standardized the wrist orientation by adding an additional tag
on the wrist of the glove. This tag acts as a reference to the
finger tags, making it much easier to interpret changes in finger
position as the subject moves.

2. Finger movements across different axes relative to the
reader antennas register differently. For example, the re-
searchers discovered that finger on the axis perpendicular to
to the antenna pair plane exhibit different degrees of change
to the phase profile when compared to the same movements
executed on the axis parallel to the antenna pair plane. To
resolve this, the researchers designed a phase matrix recon-
struction algorithm to be position-invariant by first confirming
the hand’s rotation angles, then using the hand’s orientation
as a reference to reconstruct the finger movements.
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Fig. 1. RF-Sign system architecture [14]

Fig. 1 shows the system architecture of RF-sign, divided
into four major components. Researchers outline phase profiles
construction as a key contribution of this paper, as both
major problems encountered by the researchers were solved

by recalibrating phase profiles using knowledge of the signals’
context, whether it was hand rotation or the position of the
RFID tag on the user’s wrist.

RF-sign achieves a 92.81% recognition accuracy on the
alphanumeric hand signals with an average angle error of 4.3°.
It is able to recognize certain signs such as Z, X, and 9 with
100% accuracy, and can recognize 21 out of 26 letters with
91% accuracy. RF-sign even tracks gestures accurately with
obstacles placed between the antennas and glove. However,
the system experiences a drop in accuracy once the glove is
more than 150cm away from the antennas. This result suggests
that a system like RF-sign would be most effective in cases
where the reader and signer are positioned closely, which may
be possible in controlled environments but not as feasible out
in the open.

In terms of cost, RF-sign is one of the cheapest imple-
mentations in this study. Passive RFID tags generally cost
under a dollar each, and the corresponding reader can be
purchased for roughly $40.00. Compared to the other methods
discussed in this survey, RF-sign is cheap and accurate at the
cost of low range and limited use cases, scoring well in the
classification accuracy and cost metrics but falling relatively
short in reliability. [14]

V. MILLIMETER WAVE SENSING

Millimeter-wave (mmWave) sensing takes advantage of
high-frequency electromagnetic waves to enable precise detec-
tion, tracking, and imaging of objects in various environments.
mmWave utilizes FMCW (Frequency Modulated Continuous
Wave) radar signals to determine an object’s range, angle,
and velocity. This process occurs when a frame is sent by
a transmitter and received by a receiver which computes
the range using a range fast fourier transformation (FFT)
and performs a Doppler estimation. A CFAR (Constant False
Alarm Rate) is applied to the output of the Doppler FFT for
object detection. From this, the direction of arrival is estimated
resulting in the ability to calculate the azimuth and elevation
values of the object. These results are useful in many scenarios
and can be specifically applied in an ASL recognition system
by understanding the movement of hand gestures through this
estimation.

A. Expressive ASL Recognition using Millimeter-wave Wire-
less Signals

ExASL utilizes mmWave sensing to recognize both manual
markers (hand gestures) and non-manual markers (head and
torso movements). Developed by researchers at George Mason
University in 2020, this system separates and identifies body
parts to accurately detect and interpret both types of markers
in ASL. Non-manual markers are crucial for understanding the
full meaning of sentences in ASL, as phrases and sentences
can be significantly augmented or altered through subtle
head and torso movements. An example demonstrating this
phenomenon is the sentence “I like apples”. If a person were
to sign this phrase but shake their head in a negative manner,



then the sentence transforms into “I do not like apples” even
though the gesture remains the same.

There are three main components to ExASL, mmWave
point cloud generation, multi-distant clustering, and multi-
view deep learning. During this process an mmWave transmits
signals that reflect off the user’s body when signing. Based
on information gathered from the gesture’s range, angle, and
velocity, for multiple points on the user’s body, a 3D point
cloud is created based on these points. A multi-distance
clustering algorithm is run on the point cloud to separate and
define corresponding body parts (left and right hand, head,
and torso) based on predefined Kinect templates. Finally, a
multi-view CNN (Convolutional Neural Network) extracts the
spatial features from each frame while a Long Short-term
Memory (LTSM) analyzes the temporal evaluation of these
features for both manual and non-manual marker recognition.
Non-manual markers are recognized through specific head
and torso movements. These include torso shifts forward for
Yes/No questions and Wh- questions (accompanied by a head
tilt), a side-to-side head shake for negation, a head nod for
assertion, a torso shift away for verb inflection, and a torso
shift right then left for spatial agreement (used to identify
multiple subjects or objects within a single sentence). This
entire process is necessary in order for EXASL to efficiently
and accurately recognize manual and non-manual markers in
ASL sentence recognition.

“How are you?”

Predicted
Sentence

Fig. 2. Workflow of EXASL when performing sentence level ASL recognition
[11]

In order to test the efficacy of EXASL, 5 participants trained
and tested a dataset of 23 signs and 29 sentences made up of
these signs on three models: Unclustered multi-view which
does not separate body parts, Clustered multi-view which uti-
lizes body part separation, and Clustered multi-view swapped
which swaps left and right hands for every input doubling
training sample size. Overall, Clustered multi-view swapped
achieved the highest accuracy for both word-level recognition
(92.5%) and sentence-level recognition (WER of 0.79%, SER
of 1.25%). This model’s remarkable performance suggests
that there are benefits to having body part separation and
data augmentation in enhancing ASL recognition accuracy. All
models exhibited difficulty differentiating between words with
similar gestures, a challenge that persisted in sentence-level
recognition. There was also a noticeable increase in word and
sentence level error when cross subject evaluation occurred
(utilizing a different participant than the model was trained on)
indicating the need for greater participant diversity in training
data. [11]

B. Other mmWave Sensing Methods

While researching a literature survey for gesture recogni-
tion, we encountered Soli, a high-resolution and low-power
mmWave radar-based solution developed by Google in 2016.
Soli achieved 92.1% accuracy on 4 hand gestures with minimal
power consumption while running at over 10,000 frames per
second [6].

VI. ACOUSTIC SENSING

Acoustic sensing takes advantage of sound waves to detect
and interpret gestures by analyzing the changes in wave
propagation caused by hand and body movements. Inaudible
acoustic sounds are emitted and the signals reflected back
are analyzed to perform different functions. With acoustic
sensing, hand gesture recognition, hand gesture tracking],
localization, user authentication, keystroke snooping attacks,
and environmental sounds are all able to be captured and
performed [1].

A. HearASL

HearASL employs acoustic sensing through a smartphone
system in order to recognize ASL words and sentences. De-
veloped by researchers at the Beijing Institute of Technology
and Temple University in 2022, this system analyzes inaudible
sound waves emitted from a smartphone’s speaker and records
the reflection of the signer’s hands through the smartphone’s
microphone. To the researchers’ knowledge, it is the first
smartphone-based ASL recognition system and is designed to
be resistant to ambient noise.

The HearASL process comprises three main stages: data
collection, CIR enhancement, and sign language recognition.
In data collection, the transmitted signal, modulated with a
Barker code for precise channel estimation, is sent out by
the speaker, and the received signal is filtered to eliminate
ambient noise. During CIR enhancement, the system estimates
the channel impulse response (CIR), detailing how the signal
reflects off the signer’s hands and returns to the microphone.
The CIR is converted into an image where time, distance,
and signal strength are represented on the x-axis, y-axis, and
pixel brightness, respectively. Static reflections from stationary
objects are removed using a 1st-order difference operation,
and a Hampel filter reduces noise and outliers. Finally, sign
language recognition employs deep learning models for word
and sentence-level classification. A CNN with an attention
mechanism is used for word-level recognition, while a CNN+
gate recurrent unit (GRU) + connectionist temporal classifi-
cation (CTC) model handles sentences. The GRU layer helps
capture temporal dependencies between signs, allowing the
model to understand the context of the sentence while the
CTC loss function allows the model to learn directly from
unsegmented data, eliminating the need to manually label the
start and end times of each word in a sentence. HearASL
further improves the accuracy of sentence-level recognition
by including specific labels for common transition movements
that occur between words, ensuring that these movements are
ignored during the recognition process.
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Fig. 3. Workflow of HearASL when performing ASL recognition [13]

HearASL demonstrated impressive results in recognizing
and translating ASL. In user-dependent tests, the system
achieved 97.2% accuracy for individual signs and a 0.9% WER
for sentences. In user-independent tests, the accuracy remained
high at 90.8% for one-handed signs and 90.6% for two-handed
signs, with a WER of 3.4% in sentences. The system also
underwent extensive robustness testing, including evaluations
in various environments, across different distances, and at
varying angles. Tests conducted in real-world settings such
as apartments, corridors, sidewalks, and restaurants showed
that accuracy only slightly decreased in noisy environments.
The system’s performance remained consistent across a range
of distances (20-80 cm) and angles (0°-60°) between the
signer and the smartphone. HearASL performs optimally at
a distance of 40 cm between the signer’s hands and the
smartphone, with accuracy declining at greater distances due
to weaker signal strength and increased challenges in channel
estimation. Regarding angle variations, HearASL maintained
highest accuracy at 0°, decreases as angle increases, but
remains relatively in optimal (> 87.5%) range at 40°. [13]

B. Other Acoustic Sensing Methods

Another literature review we read made reference to an
acoustic-based intrusion detection system that operated on
signals acquired by a distributed microphone network. While
this system benefits from higher spatial resolution due to
audio waves having smaller wavelengths than WiFi signals, a
distributed microphone network solution for ASL recognition
would require complex setup and would have a higher cost of
implementation. Moreover, the acoustic detection system refer-
enced in the survey was designed to detect intruder movements
within a building, which is a task much less granular than the
finger-level of detail required for ASL recognition [7] [15].

VII. DISCUSSION

Having explored the diverse wireless sensing technologies
utilized for ASL recognition, this section delves into a compar-
ative analysis of these approaches, highlighting their respective
strengths, limitations, and applicability across various scenar-
ios. All the systems presented address the privacy and low light
concerns associated with using cameras, as wireless sensing
enables recognition without requiring the person to be visibly
recorded.

A. Classification Accuracy

Accuracy is a critical factor in evaluating the ability of
wireless sensing technologies to perform ASL recognition.
High accuracy is essential for ensuring reliable communication
and practical usability, particularly in real-world scenarios. The
accuracy of each model was based on its highest-performing
configuration, and the results are summarized in Table VII-C.
Although all the papers include some form of accuracy
measurement, the metrics are based on different aspects of
hand signaling, such as hand positions, alphanumeric gestures,
words, or sentences, which vary across the studies. HearASL
demonstrated the highest accuracy overall, achieving 97.2%
accuracy for word-in-sentence recognition in private settings
and optimal positioning relative to the phone sensor [13].
This is followed by SignFi, which achieved 94.81% accuracy
[8] across an impressive 276 gestures. The Doppler based
deep learning model reported an accuracy range of 87.5% to
95%, depending on whether transfer learning with VGG-16
was applied [2]. RF-Sign and EXASL both achieved roughly
93% accuracy, with RF-Sign focusing on alphanumeric recog-
nition and ExASL performing word-level recognition across
23 words[14][11]. Finally, WiFinger, while having the lowest
accuracy at 90.4%, still maintains a strong performance for
ASL recognition[5]. These results indicate that while each
system demonstrates high accuracy in its target domain, the
differences in scope have become a critical factor in determin-
ing the most suitable option for specific applications. Systems
like HearASL and SignFi are particularly notable for balancing
both high accuracy and scope of recognition, showcasing their
potential for practical deployment.

B. Cost

An important factor to consider when evaluating wireless
sensing technologies for ASL recognition is the cost of im-
plementation, which includes hardware requirements, setup
complexity, and potential scalability for widespread deploy-
ment. The Doppler detector-based device utilizes a microwave
HB100 radar detector, which costs roughly $7, alongside a
DAQ device priced between $79 and $1,000, depending on
specifications. Both SignFi and WiFinger leverage the existing
infrastructure of commercial Wi-Fi devices, incurring little to
no additional cost if a router is already owned. RF-Sign uses
RFID tags, which are highly affordable (approximately $14
for 50 tags), paired with sensors costing $30-$50. ExASL
employs a commercially available mmWave radar from Texas
Instruments, priced between $20 and $35. Although EXASL
has a relatively low hardware cost, its training cost is notable.
Training the word-level model required approximately 14
hours for 23 words, while the sentence-level model took about
two days to train on 29 sentences, as it needs to perform both
body part separation and processing through a CNN+LSTM
system [11]. This cost would increase significantly with the
addition of more words and phrases to train a comprehensive
ASL dataset. HearASL, on the other hand, implemented its
system using the iPhone 12 Pro, but its approach should theo-
retically work on any modern smartphone with a microphone



and speaker system, which makes it one of the most scalable
and accessible solutions due to the widespread availability of
smartphones. From this analysis, it becomes clear that while
hardware costs for most systems are relatively low, training
and scalability considerations introduce significant trade-offs.
Systems like WiFinger and HearASL, which rely on existing
devices, present the most cost-effective and scalable solutions.
However, more specialized systems, including ExASL, offer
unique capabilities at the expense of higher training complex-
ity, highlighting the importance of aligning system choice with
application-specific needs.

C. Reliability

Another factor in evaluating these systems is their reliance
and robustness, as their effectiveness in real-world scenarios
depends on consistent performance across diverse environ-
ments, users, and conditions. In controlled environments,
WiFinger demonstrates a promising level of resilience, effec-
tively filtering out noise and adapting to minor disturbances. Its
preprocessing and feature extraction techniques enable reliable
operation under moderately stable conditions[5]. However,
its performance can degrade in the presence of dynamic
changes, such as moving objects or additional people near
the user, which can interfere with CSI signal patterns [5]. The
robustness and limitations of the doppler-based system were
not explicitly addressed in the study, but other sources suggest
that it may be susceptible to interference from other moving
objects and variations in user speed and distance, which could
degrade its performance [7].

ExASL’s separating body parts method reduces the impact
of second-order reflections and noise, achieving high accuracy
in recognizing signs and sentences. RF-Sign demonstrates
robustness by utilizing position models and reference tag RSS
trend analysis, ensuring accurate recognition despite variations
in angles, distances, and movement speeds [14]. HearASL,
which already uses inaudible acoustic signals that operate
beyond the range of urban noises and human speech, has
evaluated its robustness by testing performance under varying
angles, distances, and levels of environmental noise. These
tests revealed that HearASL can achieve high accuracy in
word and sentence recognition in various settings, such as
restaurants, and determined optimal distance and angle ranges
[13]. Each of these methods highlights a unique approach
to improving reliability and robustness in ASL recognition.
However, continued development of systems that adapt to real-
world variability and environmental challenges is essential to
achieve truly reliable ASL recognition technologies.

VIII. CONCLUSION

The original goal of this literature review was to identify
the best ASL recognition system utilizing wireless sensing
available at present. However, the papers reviewed reveal a
diverse landscape of sign language recognition systems, each
with distinct strengths and limitations. While some systems
focus on recognizing individual signs, such as alphanumeric

symbols, others achieve complete word and sentence recog-
nition. As a result, the choice of the most suitable system
depends on specific application requirements, including the
level of detail needed, cost constraints, desired robustness,
and the target user population. Notable standouts from this
review include SignFi, EXASL, and HearASL, all of which
demonstrate high accuracy (> 92%) in gesture, word, or sen-
tence recognition. SignFi is particularly notable for its ability
to learn 276 gestures, EXASL excels in recognizing sentences
along with non-manual markers, and HearASL achieves the
highest recognition accuracy with a larger dataset compris-
ing 50 words and 30 sentences and performing robustness
tests. Compared to an existing survey of wireless sensing
techniques for gesture recognition [7], this literature review
better represents the capabilities of acoustic sensing for ASL.
In comparison, the gesture recognition survey we analyzed
frames acoustic sensing as neither low-cost nor non-intrusive,
which may not be accurate. Additionally, this paper provides
more specific context for the results of other studies, reporting
gesture type, number word/sentence classes, and individual
system drawbacks to add more depth to the final accuracy
reported by each experiment surveyed.

IX. RECOMMENDATIONS AND FUTURE WORK

Based on the information gathered and analyzed, we have
identified several key considerations for implementing an
ASL recognition system using wireless sensing. These include
creating a mixed word and finger position system, improv-
ing handling of user variability, expanding sign language
datasets to encompass a broader range of signs, enhancing
environmental robustness for real-world scenarios, and incor-
porating non-manual marker recognition. A common trend
across existing systems is either word/sentence recognition or
alphanumeric/gesture recognition, but none have effectively
combined both. Since ASL involves both letter signing and
word/sentence signing, it is crucial to address this gap. Another
challenge identified in deep learning-based systems is the drop
in accuracy when users who did not participate in training the
model perform sign to the model, highlighting the need for
more diverse user data to improve model robustness. This is
exemplified in the HearASL study where including a higher
percentage of training data resulted in having better perfor-
mance [13]. Furthermore, increasing the number of words,
sentences, and gestures in training datasets is vital, as current
systems typically train on only 50 words or fewer which is
far fewer than what is required for effective communication.
Notably, sign language involves not only manual hand signs,
but also non-manual markers, which are critical for accurate
communication. Without the inclusion of these markers, even
systems capable of recognizing a wide range of words and
sentences will miss significant aspects of ASL. Lastly, for
real-world applications where users may not understand ASL,
ensuring environmental robustness is essential. The system
must be able to filter out background noise and adapt to various
environmental conditions to facilitate reliable communication
in diverse settings.



TABLE I
*NOTE: THERE IS A DIFFERENCE HERE BETWEEN SEQUENCE AND SENTENCE.
SIMILAR TO ENGLISH, A STRING OF WORDS IS NOT NECESSARILY A SENTENCE.

Device Name WiFinger SignFi Doppler with RF-sign Expressive Hear-ASL
Deep Learning ASL
Year of Publication 2013 2018 2019 2023 2020 2022
Signal WiFi WiFi WiFi RFID mmWaves Acoustic
Device WiFi Antenna | WiFi Antenna Radar RFID Tags Radar Smartphone
Hand Gesture Type Position Movement Position Position Movement | Movement
No. Words 9 276 10 36 23 50
No. Sentences 20 N/A N/A N/A 29 30
Accuracy 90.4% 94.81% 87.5%-95% 92.81% 92.5% 97.2%

As we consider the potential impact of Al on ASL recog-
nition, it is important to examine how recent advancements
in deep learning could shape the future of sign language
recognition, particularly in the context of recognizing entire
ASL gestures rather than just individual hand positions or
specific gestures. When looking further into deep learning for
ASL, there are no significant changes compared to what we
have seen so far. [3] is using deep learning to classify gesture
movements (or words and phrases), which is an advancement,
however it is not for ASL but rather Chinese sign language.
The other research for ASL is classifying hand positions using
deep learning [9], but as previously stated, hand positions is
not representative of the language, rather just letters. Due to
this classification technique, there has been advancements in
accuracy, over 99%, which is an improvement in the tech-
niques discussed here, but, we are looking for advancements
in the entire language, not just gesture recognition. Due to
this, we have not included recent research in this area, but
encourage the reader to investigate on their own using these
papers. [3] [9].

X. INDIVIDUAL CONTRIBUTIONS

All members within the group were responsible for reading
and encapsulating two research papers and analyzing their
classification, cost, and reliance. We each summarize our
individual contributions:

o Leena: I covered the millimeter wave and acoustic wire-
less sensing sections. This includes encapsulating the
ExASL and HearASL papers as well as analyzing their
accuracy, cost, and reliability. I also wrote the discus-
sion between all the papers, introduction before metrics,
conclusion, and provided the recommendations in the
recommendations and future work sections.

e Sarah: I added the motivation section and the metrics to
the introduction. In addition I wrote the forward to the
WiFi sensing section as well as read, summarized and
analyzed the first two WiFi papers. I created the analysis
table and added the last paragraph to the recommenda-
tions and future work. In general, I organized the layout
and format of this report.

o Ganesh: I analyzed RF-sign to investigate the capability
of RFID-based detection systems in recognizing ASL. I
also report a brief summary on RFID, and I summarized
results from another literature review on state-of-the-art

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

wireless sensing for gesture recognition throughout this
paper. I also wrote the abstract of this paper.
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